Heat shock protein 72 suppresses apoptosis by increasing the stability of X-linked inhibitor of apoptosis protein in renal ischemia/reperfusion injury

نویسندگان

  • BAIYU ZHANG
  • RONG RONG
  • HUIYAN LI
  • XUAN PENG
  • LIPING XIONG
  • YIHAN WANG
  • XUEQING YU
  • HAIPING MAO
چکیده

X‑linked inhibitor of apoptosis protein (XIAP) negatively regulates apoptotic pathways at a post‑mitochondrial level. XIAP functions by directly binding and inhibiting activation of specific caspases. Upon apoptotic stimuli, mitochondrial second mitochondria‑derived activator of caspases (Smac)/direct IAP‑binding protein with low PI (Diablo) is released into the cytosol, which results in displacement of XIAP from caspases. Heat shock protein 72 (HSP72), an anti‑apoptotic protein, prevents mitochondrial injury resulting from acute renal ischemia/reperfusion (I/R), its role in Smac/Diablo and XIAP signaling remains to be elucidated. In the present study, the hypothesis that HSP72 prevents XIAP degradation in vivo and in vitro was assessed. To this purpose, a rat model of I/R injury was used to investigate the renoprotective role of HSP72 by treatment with geranylgeranylacetone (GGA), a specific inducer of HSP72. The mechanism of the cytoprotective properties of HSP72 was also investigated in vitro using adenovirus‑mediated overexpression of HSP72 in adenosine triphosphate (ATP)‑depleted human kidney 2 (HK‑2) cells. Pre‑conditioning rats with GGA attenuated renal tubular cell damage, reduced cell apoptosis, preserved XIAP protein content and improved renal function following I/R injury. An in vitro study was performed in which cells were transiently exposed to 5 mM sodium cyanide in a glucose‑free medium in order to induce apoptosis. Compared with the control, overexpression of HSP72 inhibited Smac/Diablo release from the mitochondria and increased levels of XIAP and pro‑caspase 3 in ATP‑depleted HK‑2 cells. In addition, HSP72 interacted with Smac/Diablo. The present data demonstrates that HSP72 preserves renal function in I/R injury through its anti‑apoptotic effects, which act by suppressing mitochondrial Smac/Diablo release and preserving XIAP protein content.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hydrogen sulfide treatment protects against renal ischemia-reperfusion injury via induction of heat shock proteins in rats

Objective(s): Hydrogen sulfide (H2S) attenuates ischemia-reperfusion injury (IRI) in different organs. However, its mechanism of action in renal IRI remains unclear. The present study investigated the hypothesis that H2S attenuates renal IRI via the induction of heat shock proteins (HSPs).Materials and Methods: Adult Wistar rats were subjected to unilateral renal ischemia for 45 min followed by...

متن کامل

Effect of ground black seeds (Nigella sativa L.) on renal tubular cell apoptosis induced by ischemia/reperfusion injury in the rats

Objective(s): The aim of this study was to evaluate the effects of ground black seeds on renal tubular cell apoptosis following ischemia/reperfusion (I/R) injury in rats. Materials and Methods: Forty male Wistar rats were randomly allocated into 5 equal groups including Sham, I/R model and three I/R+ black seeds (5, 10 and 20%)-treated groups. I/R groups’ kidneys were subjected to 60 min of isc...

متن کامل

The Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...

متن کامل

The Study of Petoxifylline Drug Effects on Renal Apoptosis and Bcl2 Gene Expression Changes Following Ischemic Reperfusion Injury in Rat

Background & Target: Ischemia Reperfusion injury is the tissue damage caused when blood supply returns to the tissue after a period of ischemia or lack of oxygen. In this study, the effect of pentoxyfylline on bcl2 gene expression changes and cell injury in kidney of rat following Ischemia Reperfusion were evaluated.Methods: In this experimental study, 20 male wistar rats with average weight of...

متن کامل

P-78: Role of Allopurinol, as An Antioxidant Factor, in Increasing The Number of Received Oocytes and Embryos, and Reduce Apoptosis after Heterotopic Transplantation Mouse Ovarian Tissue

Background: Ischemia and reperfusion after transplantation is the main problem which decreases follicular density in the grafted ovarian. Many sources of free radicals such as xanthine oxidase were generated during ischemia. In this study, we used allopurinol as xanthine oxidase inhibitor to reduce ischemia-reperfusion injury, to increase received oocytes and embryos, and to decrease Apoptosis ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 11  شماره 

صفحات  -

تاریخ انتشار 2015